ESc 101: Fundamentals of Computing

Lecture 29

Mar 22, 2010

The Problem

Given a square $n \times n$ matrix A, compute its inverse.

- The inverse exists if and only if the determinant of A is non-zero.
- Such an A is called invertible matrix.
- Inverse can be used to solve a system of linear equations.

Computing Inverse

- By definition, inverse of A is a matrix A^{-1} such that

$$
A \cdot A^{-1}=I
$$

where I is the identity matrix:

$$
I=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right]
$$

- Taking entries of A^{-1} as unknowns, this gives rise to a system of n^{2} linear equations, which has a unique solution, if it exists.
- This system can be solved using Gaussian elimination.
- However, there is a better way.

LUP Decomposition

- A lower triangular matrix L is a square matrix such that all entries above the diagonal are zero.
- An upper triangular matrix U is a square matrix such that all entries below the diagonal are zero.
- A permutation matrix P is a square matrix such that every row and column has exactly one entry 1 and all other entries 0 .

```
Theorem
Let A be an invertible matrix. There exists matrices L, U,P such that \(A=L \cdot U \cdot P\), where \(L\) is a lower triangular matrix, \(U\) an upper triangular matrix, and \(P\) a permutation matrix.
```


Computing Inverse of a Lower Triangular Matrix

- Let L be a lower triangular matrix:

$$
L=\left[\begin{array}{cccc}
a_{0,0} & 0 & \ldots & 0 \\
a_{1,0} & a_{1,1} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
a_{n-1,0} & a_{n-1,1} & \ldots & a_{n-1, n-1}
\end{array}\right]
$$

Computing Inverse of a Lower Triangular Matrix

- Let:

$$
L^{-1}=\left[\begin{array}{cccc}
x_{0,0} & 0 & \ldots & 0 \\
x_{1,0} & x_{1,1} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
x_{n-1,0} & x_{n-1,1} & \ldots & x_{n-1, n-1}
\end{array}\right]
$$

- Then, for every $0 \leq i, k \leq n-1$:

$$
\sum_{j=k}^{i} x_{i, j} a_{j, k}= \begin{cases}1 & \text { if } i=k \\ 0 & \text { otherwise }\end{cases}
$$

Computing Inverse of a Lower Triangular Matrix

This immediately gives an algorithm to compute L^{-1} :

1. Start with i $=0$;
2. Set k = i, and solve for $x[i][i] ; / / x[i][i]=1 / a[i][i]$
3. Set $k=k-1$ until 0, and solve for $x[i][k]$;
4. Set $i=i+1$, and go to 2 .

Computing Inverse of an Upper Triangular and Permutation Matrix

- This is very similar to computing inverse of a lower triangular matrix.
- The inverse is also an upper triangular matrix.
- The inverse of a permutation matrix P is P^{T}, the transpose of P !

Computing Inverse of A

- Therefore, the inverse of $A=L \cdot U \cdot P$ is:

$$
A^{-1}=P^{T} \cdot U^{-1} \cdot L^{-1}
$$

- The LUP decomposition also gives the determinant of A :

$$
\operatorname{det} A=\operatorname{det} L \cdot \operatorname{det} U \cdot \operatorname{det} P .
$$

- The determinants of upper and lower triangular matrices are simply the products of diagonals.
- The determinant of permutation matrix equals 1 or -1 and can be easily calculated.

Doing LUP Decomposition

- Let

$$
A=\left[\begin{array}{cccc}
a_{0,0} & a_{0,1} & \cdots & a_{0, n-1} \\
a_{1,0} & a_{1,1} & \ldots & a_{1, n-1} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n-1,0} & a_{n-1,1} & \cdots & a_{n-1, n-1}
\end{array}\right]
$$

- If $a_{0,0}=0$, then swap first column with i th column such that $a_{0, i} \neq 0$.
- If there is no such i then the determinant is zero and the matrix is not invertible.

Doing LUP Decomposition

- Suppose $a_{0,0}=0$ and $a_{0,1} \neq 0$.
- Then

$$
A=\left[\begin{array}{ccccc}
a_{0,1} & a_{0,0} & a_{0,2} & \ldots & a_{0, n-1} \\
a_{1,1} & a_{1,0} & a_{1,2} & \ldots & a_{1, n-1} \\
a_{2,1} & a_{2,0} & a_{2,2} & \ldots & a_{2, n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n-1,1} & a_{n-1,0} & a_{n-1,2} & \ldots & a_{n-1, n-1}
\end{array}\right] \cdot\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right] .
$$

- The first matrix, say B, has top left element non-zero and the second matrix, say \tilde{P}, is a permutation matrix.

Doing LUP Decomposition

- We now express B as a product of a lower triangular matrix and a matrix whose first column is all zero except the first entry.
- Let

$$
B=\left[\begin{array}{cccc}
b_{0,0} & b_{0,1} & \ldots & b_{0, n-1} \\
b_{1,0} & b_{1,1} & \ldots & b_{1, n-1} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n-1,0} & b_{n-1,1} & \ldots & b_{n-1, n-1}
\end{array}\right]
$$

with $b_{0,0} \neq 0$.

- Let

$$
\tilde{L}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
\frac{b_{1,0}}{b_{0,0}} & 1 & 0 & \ldots & 0 \\
\frac{b_{2,0}}{b_{0,0}} & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{b_{n-1,0}}{b_{0,0}} & 0 & 0 & \ldots & 1
\end{array}\right] .
$$

Doing LUP Decomposition

- And

$$
C=\left[\begin{array}{cccc}
b_{0,0} & b_{0,1} & \ldots & b_{0, n-1} \\
0 & b_{1,1}-\frac{b_{1,0}}{b_{0,0}} b_{0,1} & \ldots & b_{1, n-1}-\frac{b_{1,0}}{b_{0,0}} b_{0, n-1} \\
0 & b_{2,1}-\frac{b_{2,0}}{b_{0,0}} b_{0,1} & \ldots & b_{2, n-1}-\frac{b_{2,0}}{b_{0,0}} b_{0, n-1} \\
\vdots & \vdots & \ddots & \vdots \\
0 & b_{n-1,1}-\frac{b_{n-1,0}}{b_{0,0}} b_{0,1} & \ldots & b_{n-1, n-1}-\frac{b_{n-1,0}}{b_{0,0}} b_{0, n-1}
\end{array}\right] .
$$

- Then

$$
B=\tilde{L} \cdot C .
$$

Doing LUP Decomposition

- Let A^{\prime} be the matrix obtained by deleting first row and column of C :

$$
C=\left[\begin{array}{cccc}
b_{0,0} & b_{0,1} & \ldots & b_{0, n-1} \\
0 & & & \\
\vdots & & \mathrm{~A}^{\prime} & \\
0 & & &
\end{array}\right]
$$

- A^{\prime} is invertible $\Leftrightarrow C$ is invertible $\Leftrightarrow B$ is invertible $\Leftrightarrow A$ is invertible.
- Now recursively decompose A^{\prime} as: $A^{\prime}=L^{\prime} \cdot U^{\prime} \cdot P^{\prime}$.

Doing LUP Decomposition

- We can write C as:

$$
\begin{aligned}
& C=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & & & \\
\vdots & & L^{\prime} & \\
0 & & & \ldots \\
b_{0, n-1} \\
0 & & U^{\prime} P^{\prime} & \\
b_{0,0} & b_{0,1} & \ldots
\end{array}\right] \\
& =\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & & & \\
\vdots & L^{\prime} & \\
0 & &
\end{array}\right] \cdot\left[\begin{array}{cccc}
b_{0,0} & b_{0,1}^{\prime} & \ldots & b_{0, n-1}^{\prime} \\
0 & & & \\
\vdots & & U^{\prime} & \\
0 & & &
\end{array}\right] \cdot\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & & & \\
\vdots & & P^{\prime} & \\
0 & & &
\end{array}\right]
\end{aligned}
$$

where $\left[b_{0,1} \cdots b_{0, n-1}\right]=\left[b_{0,1}^{\prime} \cdots b_{0, n-1}^{\prime}\right] \cdot P^{\prime}$.

Doing LUP Decomposition

- Therefore, C gets decomposed as:

$$
C=\hat{L} \cdot \hat{U} \cdot \hat{P}
$$

where \hat{L} is lower triangular matrix, \hat{U} is an upper triangular matrix, and \hat{P} is a permutation matrix.

- We already have:

$$
A=\tilde{L} \cdot C \cdot \tilde{P}
$$

- Hence:

$$
A=\tilde{L} \cdot \hat{L} \cdot \hat{U} \cdot \hat{P} \cdot \tilde{P}
$$

Doing LUP Decomposition

- It is easy to see that product of two lower triangular matrices is also lower triangular. Similarly for upper triangular and permutation matrices.
- Therefore:

$$
A=L \cdot U \cdot P
$$

where $L=\tilde{L} \cdot \hat{L}$ is a lower triangular matrix, $U=\hat{U}$ is an upper triangular matrix, $P=\hat{P} \cdot \tilde{P}$ is a permutation matrix.

- In addition, the diagonal entries in L are all 1's: follows from the above construction!

